骑车所用的时间=步行的时间-0.5小时.
请同学依据上述等量关系列出方程.
答案:
方法1 设这名学生骑车追上队伍需x小时,依题意列方程为
15x=2×15 x+12.
方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为
15x-15 2x=12.
解 由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程.
方程两边都乘以2x,去分母,得
30-15=x,
所以 x=15.
检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意.
所以骑车追上队伍所用的时间为15千米 30千米/时=12小时.
答:骑车追上队伍所用的时间为30分钟.
指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离 时间.
如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按
速度找等量关系列方程,所列出的方程都是分式方程.
例2 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?
分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是
s=mt,或t=sm,或m=st.
请同学根据题中的等量关系列出方程.
答案:
方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3.依题意,列方程为
2(1x+1x3)+x2-xx+3=1.
指出:工作效率的意义是单位时间完成的工作量.
方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程
2x+xx+3=1.
方法3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程
1-2x=2x+3+x-2x+3.
用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了.重点是找等量关系列方程.